Turán′s Extremal Problem in Random Graphs: Forbidding Even Cycles

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Extremal Problem For Random Graphs And The Number Of Graphs With Large Even-Girth

We study the maximal number of edges a C2k-free subgraph of a random graph Gn;p may have, obtaining best possible results for a range of p = p(n). Our estimates strengthen previous bounds of F uredi 12] and Haxell, Kohayakawa, and Luczak 13]. Two main tools are used here: the rst one is an upper bound for the number of graphs with large even-girth, i.e., graphs without short even cycles, with a...

متن کامل

Even Cycles in Directed Graphs

It is proved that every strongly connected directed graph with n nodes and at least ⌊(n + 1)/4⌋ edges must contain an even cycle. This is best possible, and the structure of extremal graphs is discussed.

متن کامل

Extremal graphs without 4-cycles

We prove an upper bound for the number of edges a C4-free graph on q 2 + q vertices can contain for q even. This upper bound is achieved whenever there is an orthogonal polarity graph of a plane of even order q. Let n be a positive integer and G a graph. We define ex(n,G) to be the largest number of edges possible in a graph on n vertices that does not contain G as a subgraph; we call a graph o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 1995

ISSN: 0095-8956

DOI: 10.1006/jctb.1995.1035